Tunnel kiln technology is a continuous moving ware kiln in which the clay products to be fired are passed on cars through a long horizontal tunnel. The firing of products occurs at the central part of the tunnel. The tunnel kiln is considered to be the most advanced brick making technology. The main advantages of tunnel kiln technology lie in its ability to control over the firing process and high quality of the products.

The tunnel kiln technology was developed around mid 19th century in Germany. However, the application of the technology for brick firing took place in the 20th century. After the Second World War, the technology was widely adopted and led to the transformation of the European brick industry from several thousand small and scattered brick making units into a few hundred large scale and highly mechanised tunnel kiln units.

In Asia, China and Vietnam started adopting the technology during the 1970’s and now have several hundred tunnel kilns in operation. In India, there are very few (~5) tunnel brick kiln units.

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of enterprises</th>
<th>Total production billion bricks/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vietnam</td>
<td>~700</td>
<td>~10.5</td>
</tr>
<tr>
<td>India</td>
<td>~5</td>
<td>~0.08</td>
</tr>
</tbody>
</table>

*Numbers are estimates only

Out of the total annual production of around 280 billion bricks in India and Vietnam only around 10.6 billion bricks are produced by tunnel kiln technology.

% CONTRIBUTION TO THE TOTAL BRICK PRODUCTION IN INDIA AND VIETNAM

~4%
In a tunnel kiln, a continuous moving ware kiln, the clay products/bricks to be fired are passed on cars (1.1) through a long horizontal tunnel (1.2). The firing of bricks occurs at the central part of the tunnel. The length of tunnel can vary from 60 m to 150 m.

Fuel (granulated/pulverised coal) is fed into the firing zone of the kiln through feed holes provided in the kiln roof. The firing zone usually extends up to 8 cars. The temperature in the firing zone is maintained at 900 – 1050°C.

There is counter current heat transfer between the bricks and the air. Cold air enters the kiln from the car exit end (6.1) and gets heated while cooling the fired bricks. After combustion, the hot flue gases travel towards the car entrance end losing a part of the heat to the green bricks entering the kiln.

Three distinct zones appear in an operating tunnel kiln:

- **Brick firing zone** where the fuel is fed and combustion is happening.
- **Brick preheating zone** (before the firing zone) where the green bricks are being pre-heated by the hot flue gases coming from the firing zone and
- **Brick cooling zone** (ahead of the firing zone) where fired bricks are cooled by the cold air flowing into the kiln.

Generally green bricks are produced by mixing powdered fuel with clay. Green bricks are then moved in the tunnel or chamber dryers on cars for drying. Heat from the hot flue gases coming out of the kiln is utilized for the drying of bricks.

The cars loaded with dried green bricks are pushed in the kiln. The cars are moved inside the kiln intermittently at fixed time intervals. The duration of the firing cycle can range from 30 to 72 hours.

Hot air/gases are extracted from the tunnel kiln at several points along the length of the kiln and are supplied to the drying tunnel/chamber. In some of the kilns, there is also provision of a hot air generator to supplement the requirement of hot air for drying.

The flue gases from the drying tunnel are released in the atmosphere through a chimney.
FACTSHEETS ABOUT BRICK KILNS IN SOUTH AND SOUTH-EAST ASIA

TUNNEL KILN TECHNOLOGY

AIR EMISSIONS AND IMPACTS

MEASURED EMISSION FACTORS

<table>
<thead>
<tr>
<th>g/kg of fired bricks</th>
<th>CO2</th>
<th>Black Carbon</th>
<th>PM</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>166.3</td>
<td>negligible</td>
<td>0.24</td>
<td>3.31</td>
</tr>
<tr>
<td>Range</td>
<td>NA</td>
<td>0.175 – 0.31</td>
<td>2.45 – 4.18</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFIC ENERGY CONSUMPTION
Energy consumed for firing 1 kg of fired brick
Average: 1.4 MJ/kg of fired bricks
(Range: 1.34 – 1.47 MJ/kg of fired brick)

EMISSION STANDARDS
Notified for PM only

- **Country** | PM (mg/Nm³)
- **India** | No emission standard has been notified for tunnel brick kilns
- **Vietnam** | No emission standard has been notified for tunnel brick kilns

COMMENTS ON EMISSIONS
Better fuel combustion results in lower emissions from a tunnel kiln.

FUELS AND ENERGY

COMMONLY USED FUELS
- Coal
- Petcoke

SPECIFIC ENERGY CONSUMPTION
Energy consumed for firing 1 kg of fired brick
Average: 1.4 MJ/kg of fired bricks
(Range: 1.34 – 1.47 MJ/kg of fired brick)

MAIN CAUSES FOR HEAT LOSS
Heat contained in the kiln cars and fired bricks at the kiln exit and in hot flue gases are the main sources of heat loss in tunnel kilns.

Financial Performance

CAPITAL COST BREAKDOWN

- **Construction Material + labour**: 57%
- **Equipment**: 43%

PRODUCT QUALITY

Product Quality
As per the local market perception

GOLD - 95%

LOSSES & BREAKAGES
- **2%**
- **INFERIOR - 3%**

Better heat distribution results in uniform temperature across the kiln cross section in the firing zone thereby resulting in a higher percentage of good quality bricks.

Types of product that can be fired in the kiln
- Solid bricks
- Hollow/Perforated bricks
- Roof tiles
- Floor tiles

Production capacity
- **~50,000 bricks per day**

Brick size
- **230 mm x 115 mm x 75 mm**

NUMBER OF OPERATORS
- **~20**

PAYBACK PERIOD
- **Simple Payback**: 2 years
- **Discounted Payback** (@ 6.5%): 2.2 years

OCCUPATIONAL HEALTH AND SAFETY

Exposure to Respirable Suspended Particulate Matter
The concentration of air pollutants in the surrounding environment of a tunnel kiln is low

The workers have low risk of developing respiratory tract infections and cardiovascular diseases.

Exposure to Thermal Stress
Exposure of workers to heat from the kiln is quite low.

This reduces the thermal stress and consequent risk of eye & skin diseases and dehydration among workers.

Risk of accidents
In a well operated tunnel kiln, the risk of accidents is low.

Low risk of injuries

Compliance with ILO standards and remarks on migratory labour and conditions of labour
Practices followed at tunnel kiln enterprises do not always comply with the International Labour Standards on occupational health and safety drawn up by ILO.

Because of mechanisation of the processes, the working conditions of workers in tunnel kiln enterprises are relatively better.
CONCLUSION

Performance of tunnel kiln is compared with the most commonly used continuous kiln technology in the region which is FCBTK.

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>TUNNEL</th>
<th>FCBTK</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR EMISSION (g/kg FIRED BRICK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>166.3</td>
<td>131</td>
<td>Tunnel kiln emits ~80% lower PM and negligible BC as compared to FCBTK. This is mainly because of better combustion and use of internal fuel. The emission of CO is higher in case of tunnel kiln, probably due to incomplete combustion of internal fuel.</td>
</tr>
<tr>
<td>Black Carbon</td>
<td>0.00</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>0.24</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>3.31</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>FUEL & ENERGY (MJ/kg fired brick)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEC</td>
<td>1.4</td>
<td>1.30</td>
<td>Tunnel kiln consumes marginally higher energy as compared to FCBTK. It is to be noted that the SEC in tunnel kilns also includes the energy utilised for the drying of bricks in the tunnel dryer.</td>
</tr>
<tr>
<td>FINANCIAL PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Cost (USD)</td>
<td>-1,000,000</td>
<td>50,000-80,000</td>
<td>The capital cost of tunnel kiln is substantially higher as compared to FCBTK mainly because of mechanisation of brick production processes and considerably larger production.</td>
</tr>
<tr>
<td>Production Capacity</td>
<td>-15 million bricks/year</td>
<td>3-8 million bricks/year</td>
<td></td>
</tr>
<tr>
<td>Simple Payback</td>
<td>-2 years</td>
<td>0.4 - 1.1 years</td>
<td></td>
</tr>
<tr>
<td>PRODUCT QUALITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types of product</td>
<td>All types of products</td>
<td>All types of products</td>
<td>Both the kiln technologies are suitable for firing all types of product. However, the quality of bricks fired in tunnel kilns is better as compared to those from FCBTKs. Also while a tunnel kiln can be used exclusively for production of hollow bricks, in a FCBTK such exclusive production is not possible.</td>
</tr>
<tr>
<td>Good Quality Product</td>
<td>95 %</td>
<td>60 %</td>
<td></td>
</tr>
<tr>
<td>OHS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure to dust</td>
<td></td>
<td></td>
<td>Tunnel kiln enterprise offers better OHS conditions as compared to a FCBTK enterprise.</td>
</tr>
<tr>
<td>Exposure to Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of accidents</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES
1. ‘Brick by Brick: The Herculean Task of Cleaning up the Asian Brick Industry’ written by Urs Heierly and Sameer Maithel available at www.gkspl.in/Brick_by_brick.pdf.
3. Based on interaction with tunnel kiln owners and professionals working in brick sector
6. Ibid 2.
7. Ibid 5.
10. International Labour Standards are instruments drawn up by ILO in the form of conventions (the basic principles to be implemented) and recommendations (more detailed guidelines). Details on the standards for OHS can be found at http://www.ilo.org/dyn/ommhome/om/1755/PDF/AF2012.071518_by-Occupational_safety_and_health.pdf. A list of all such instruments on OHS with their status is available at http://www.ilo.org/dyn/ommhome/om/1755/PDF/AF2012.071518_by-Occupational_safety_and_health.pdf.

AKNOWLEDGEMENTS
The project team would like to acknowledge the financial support received from the Swiss Agency for Development and Cooperation for preparation of the factsheets.

Note: In the initial stage of this initiative of developing factsheets on brick kiln technologies, factsheets are developed for South and South-East Asia and Latin America regions. Factsheets on brick kiln technologies of other regions will be developed over time.

Disclaimer: The country borders indicated on the map do not necessarily reflect the FDFA’s official position. The red dotted line represents approximately the Line of actual Control in Jammu and Kashmir agreed upon by India and Pakistan. The final status of Jammu and Kashmir has not yet been agreed upon by the parties.

Factsheet prepared by Greentech Knowledge Solutions Pvt. Ltd., New Delhi (Dr Sameer Maithel, Sonal Kumar and Dheeraj Lalchandani)

Design & Illustration
Shoki Kanungo

CONTACT
Greentech Knowledge Solutions Pvt Ltd.
New Delhi, India
Tele/Fax: +91 11 45535574
E-mail: mailbox@gkspl.in
Web: www.gkspl.in

MARCH 2014